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Introduction

CASCADE: Monte-Carlo event generator based
on the CCFM evolution equation

designed for dynamics at small x

unintegrated gluon density A(x, kt, µ2)
+ CCFM parametrization of valence quark

distribution

but no sea quark distribution/density

theoretical basis: kT -factorization at small x [Catani, Hautmann ’94]

resummation of collinear (DGLAP) and small x (BFKL) logarithms
can be achieved at a time in a consistent way

CASCADE: MonteCarlo realization of kT -factorization at small x

based on CCFM: LO evolution equation which interpolates between
DGLAP and BFKL
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CCFM evolution and quark emission

CCFM evolution based on principle of color coherence
emissions of gauge bosons

unintegrated gluon and
valence quark

not present

Consequences: (A) Evolution (exclusive radiative corrections!):

only gluonic emissions, no quark jets purely gluonic

DGLAP: naturally contained

BFKL: through NLO corrections, not contained in (LO) CCFM
evolution
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Quark splitting: hard processes

Consequences: (B) hard process: LO (sea-)quark induced processes
require 1-loop ME (and higher)

EXAMPLE: DY/Z-boson production

DGLAP @ leading order: qq̄ → Z

quark q: valence quark of proton 1

anti-quark q̄: sea quark, couples to gluon
evolution of proton 2

CCFM with unintegrated gluon:

Forward DY (sea & valence quark)’: qg∗ → Zq
O(αs) [Ball, Marzani, ’09]

Central DY (2 seaquarks): g∗g∗ → Zqq̄ O(α2
s)

[Deak,Schwennsen, ’08], [Baranov, Lipatov, Zotov ’08]

Collinear divergence: require finite quark masses
and/or cut-offs
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Goal of this study: gluon → quark splitting (Pqg)

supplement CCFM evolution by gluon → quark
splitting

restrict to splitting in the last evolution step

keep finite transverse quark momentum qT
kT factorized seaquark

correct high energy & collinear limits,
similar to CCFM evolution

+ test accuracy of (formal) factorization numerically

x,k

zx,q

Process of interest at LHC: forward Drell-Yan production (γ∗, Z, W )

probe proton at very small x, up to 3 · 10−6

investigate small x dynamics: BFKL, saturation, . . .

allows to compare exact versus factorized expression
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Quark-gluon splitting and collinear factorization

DGLAP: contains naturally splitting function
Pqg(z) = Tr(z2 + (1− z)2)

no kT dependence for seaquark distribution
q(x, µ2) and partonic cross-section σqq̄→Z

no small x dynamics included

σ̂qq̄→Z(ν = ŝ) =
√

2GFM2
Z(V 2

q +A2
q)︸ ︷︷ ︸

Z-coupling

× π

Nc
δ(ν −M2

Z)

[Catani, Hautmann ’94 ] : high energy resummation within collinear
factorization: kT-dependent splitting function

PCH
qg

(
z,k2, q2

)
= TR

(
q2

q2 + z(1− z)k2

)2 [
Pqg(z) + 4z2(1− z)2 k2

q2

]
⊗ gluon Green’s function: high energy resummed splitting

universal defines small x-resummed seaquark distribution

full kT (gluon) dependence, but integrate out qT (quark)
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gauge invariant off-shell factorization: reggeized quarks

reggeized quarks (in analogy to reggeized gluons for BFKL):

at high energies, effective d.o.f. in t-channel processes with quark
exchange [Fadin,Sherman, 76,77 ], [Lipatov,Vyazovsky,’00], [Bogdan, Fadin, 06],

here applied to qg∗ → Zq process at Born level

effective vertices: re-arrangment of QCD diagrams

q

p′

k, µ, a

= igta
(
γµ − q�(n+)µ

k+

)
etc.

gauge invariant definition of off-shell Matrix Elements

σ̂qq̄∗→Z(ν, q2) =
√

2GFM2
Z(V 2

q +A2
q)︸ ︷︷ ︸

Z-coupling

× π

Nc
δ(ν −M2

Z − q2)

gluon-quark splitting = TR: Multi-Regge-Kinematics sets z = 0
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kT -factorized seaquark

limit z → 0 only asymptotically justified

goal: keep z finite correct & complete collinear limit

how ? generalize effective vertices

here: possible to include z 6= 0 + keeping off-shell gauge invariance
re-do calculation: re-obtain kT -dependent splitting function

by Catani&Hautmann

Asea(x, q2, µ2) :=
1
q2

1∫
x

dz

µ2/z∫
0

dk2PCH
qg

(
z,k2, q2

)Agluon
CCFM

(x
z
,k2, µ̄2

)
qT -dependent sea-quark density:

* correct collinear limit & small x resummation ( CH-splitting + gluon
density) & gauge invariance verified

* two choices for the hard scale µ̄2: factorization scale µ̄2 = µ2

(inclusive) or angular ordering scale µ̄2 = q2+(1−z)k2

(1−z)2 (CCFM)
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Forward DY: exact versus factorized

confront with full σ̂qg∗→Zq (in kT -fact.) [Ball, Marzani, ’09]:
define ’renormalized’ cross-section σ̄qg∗→Zq

σ̄(ν,k2) ≡ σ̂(ν,k2)−
∫ 1

x

dz

z

∫
dq2

q2
σ̂qq̄∗→ZP

CH
qg

’renormalized’ σ̄ subleading in high energy (ŝqg∗ � Q2, q2,k2) and
collinear (Q2 �q2 � k2) limit ‘higher order’ correction

factorized expression has approximate kinematics (σ̂qq̄∗→Z)

δ(zν −M2
Z − q2)↔ δ(zν −M2

Z −
q2

1− z − zk
2)

kT -factorization increases accuracy in kinematics, but does not
capture finite z-correction
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Numerical comparision full ME versus factorized

numerical value of σtot of factorized expression smaller than full ME

reason: s-channel contributions, mainly kinematics
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Numerical comparision full ME versus factorized

Agreement best for large pT region
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’Renormalized’ qg∗ → Zq cross-section

σ̄(ν,k2) ≡ σ̂(ν,k2)−
∫ 1

x

dz

z

∫
dq2

q2
σ̂qq̄∗→ZP

CH
qg

yields finite (7%− 16%) correction to factorized expression, free of large
collinear logarithms
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Conclusion and outlook

Defined qT dependent seaquark density

(•) interpolates (as CCFM) between DGLAP and high energy limit
(•) gauge invariant definition of off-shell splitting and ME
(•) ’renormalized’ 1-loop cross-section σ̄qg∗→Zq collinear finite

Numerical checks:

(•) Qualtitative agreement of exact and factorized expression
(•) Approximation in kinematics factorized ME generally below

complete calculation
(•) σ̄qg∗→Zq gives finite correction to leading order (i.e. qT -factorized)

expression

CASCADE: Splitting allows to include gluon-quark spitting into
CCFM evolution

(•) starting point to systematically include quark emissions into parton
shower

(•) seaquark induced processes on the same level as gluon induced
processes

kT-dependent sea-quark Martin Hentschinski



Scales & masses

Scales, masses, coouplings, parton densities

Scales:

Z-mass: MZ = 91.1876 GeV

Unintegrated gluon density:

CCFM set A0

Valence quark distribution:

CCFM parametrization valence quark distribution

starting distribution CTEQ
evolution with Pqq and angular ordering of emitted gluon

Coupling constants:

GF = 1.166× 10−5GeV −2

αs(Q2) with Q2 = M2
Z + p2

Z
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Z-mass distribution
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